Structured Multigrid for Taylor-Hood Finite Elements

Lukas Spies

Memorial University of Newfoundland

22nd March 2016

with the help of Scott MacLachlan, Thomas Benson, Luke Olson

Overview	v Stokes Equation	ns Geometric Setup	GMRES and Multigrid	First Results	Summary	Future Work
_			Overview			
	4 0.1 1					

- 1. Stokes Equations
- 2. Geometric Setup
- 3. GMRES and Multigrid
- 4. First results
- 5. Summary
- 6. Future Work

STOKES EQUATIONS

$$-\nabla \cdot (\nu \epsilon(\mathbf{u})) + \nabla p = \mathbf{f} \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

 \rightarrow assuming ν to be constant simplifies (1) to

$$-\nu\nabla^2\mathbf{u}+\nabla p=\mathbf{f}$$

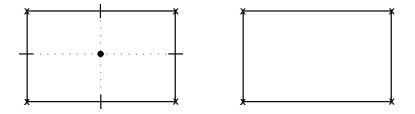
Weak form: Find $u \in H^1_0(\Omega)$ and $p \in L^2(\Omega)/\mathbb{R}$ such that

$$\begin{aligned} a(\mathbf{u},\mathbf{v}) + b(\mathbf{v},p) &= (\mathbf{f},\mathbf{v}) \ \forall \mathbf{v} \in \mathbf{H}_0^1(\Omega) \\ b(\mathbf{u},q) &= 0 \qquad \forall q \in L^2(\Omega)/\mathbb{R} \end{aligned}$$

$$\Rightarrow \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ 0 \end{bmatrix}$$

TAYLOR-HOOD ELEMENTS

Q2 elements for velocity - Q1 elements for pressure



- \rightarrow known to be inf-sup stable
- \rightarrow equally spaced, regular structure

STENCIL EXTRACTION

Number of non-zeros per row (Laplacian):

	nodes	x-edges	y-edges	centers	Total
nodes	9	6	6	4	25
x-edges	6	3	4	2	15
y-edges	6	4	3	2	15
centers	4	2	2	1	9

 \rightarrow Natural consequence: localised stencil-based calculations

 \rightarrow Stencils independent from each other \Rightarrow parallelisable

Initial system

 $A\mathbf{x} = \mathbf{b}$

GMRES minimises 2-norm of residual

$$||\mathbf{r}_{\mathbf{m}}||_2 = ||\mathbf{b} - A\mathbf{x}_{\mathbf{m}}||_2$$

over all vectors in the Krylov-subspace

$$\mathbf{x_0} + \mathcal{K}_m(A, \mathbf{r_0}) = \mathbf{x_0} + span\{\mathbf{r_0}, A\mathbf{r_0}, ..., A^{m-1}\mathbf{r_0}\}.$$

(Right-)preconditioning:

$$AM^{-1}\mathbf{u} = \mathbf{b}$$
$$\mathbf{u} = M\mathbf{x}$$

 \rightarrow V-Cycle with rediscretisation on coarser grids

BRAESS-SARAZIN

"Ideal" Braess-Sarazin update:

$$\begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}^{new} = \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}^{old} + \omega_{BS} \begin{bmatrix} tD & B \\ B^T & 0 \end{bmatrix}^{-1} \left(\begin{bmatrix} f \\ g \end{bmatrix} - A \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}^{old} \right)$$

 \rightarrow factorised system

$$\begin{bmatrix} tD & 0\\ B^T & S \end{bmatrix} \begin{bmatrix} I & \frac{1}{t}D^{-1}B\\ 0 & I \end{bmatrix} \begin{bmatrix} \delta \mathbf{u}\\ \delta p \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{\mathbf{u}}\\ r_{p} \end{bmatrix}$$

with Schur complement

$$S = -\frac{1}{t}B^T D^{-1}B$$

BRAESS-SARAZIN

- \rightarrow compute *S* exactly
- \rightarrow approximately solve for solution using

$$S\delta p = r_p - \frac{1}{t}B^T D^{-1} \mathbf{r_u}$$
(3)

$$\delta \mathbf{u} = \frac{1}{t} D^{-1} (\mathbf{r}_{\mathbf{u}} - B\delta p).$$
(4)

with one sweep of weighted Jacobi on (3), plugging solution into (4).

 \rightarrow parameter choice: $t = 1.1, \omega = 0.7$ (based on small experiments)

Overvie	ew Stokes Equations	Geometric Setup	GMRES and Multigrid	First Results	Summary	Future Work		
FINE-SCALE PARALLELISM								
	GMRES: matrix-vector and vector-vector calculation \rightarrow easy parallelisation							
	Multigrid		matrix-vector and vector-vector calculations \rightarrow easy parallelisation					
		1	ation/restriction parallelisation	on				
	Braess-Sarazin		vector and vector parallelisation	or-vector	calculati	ions		
	Solve with S		ed Jacobi parallelisation					
	Calculate $\delta \mathbf{u}$		vector and vector parallelisation	or-vector	calculati	ions		

Overview	Stokes Equations	Geometric Setup	GMRES and Multigrid	First Results	Summary	Future Work

GPU CONSIDERATIONS

- ► fine-grain parallelism perfect for GPU's
- implemented using OpenCL
- additional cost of communication
 - \rightarrow moving initial data to GPU('s)
 - \rightarrow communication between GPU's
- ► Galerkin coarse-grid operators expensive
- direct solver on GPU?

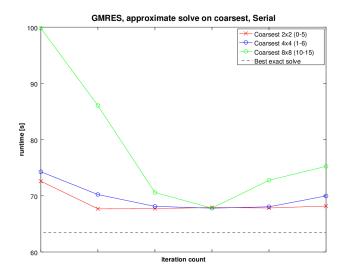
REMARKS ON NUMERICAL EXPERIMENTS

VCycle preconditioner

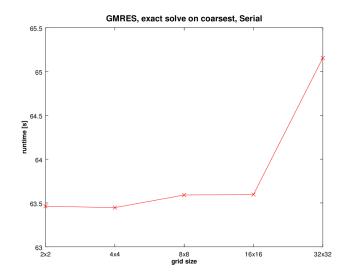
possible solve on coarsest grid:

- 1. approximate: Braess-Sarazin smoother
- 2. exact: UMFPACK library on CPU
- GPU/CPU calculations identical (up to floating-point error)
- ► CPU: Intel Xeon; GPU: NVIDIA Tesla K20X
- ► 512x512 element patch: about 2.25M degrees of freedeom (comparison: about 0.25M for Poisson)

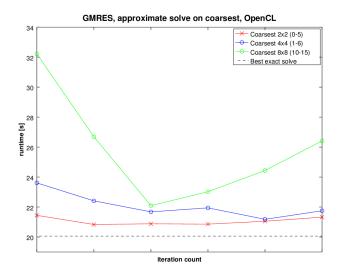
SERIAL PERFORMANCE



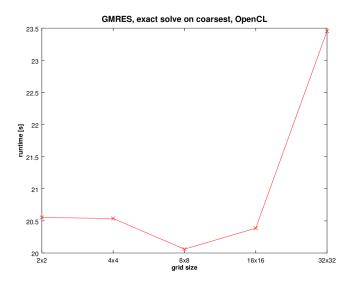
SERIAL PERFORMANCE



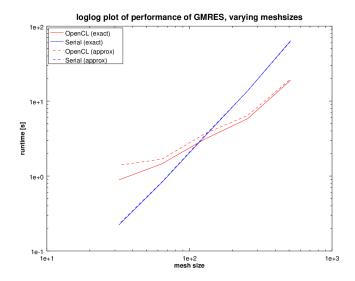
OPENCL PERFORMANCE



OPENCL PERFORMANCE



SPEEDUP COMPARISON



Overview	Stokes Equations	Geometric Setup	GMRES and Multigrid	First Results	Summary	Future Work
			Summary			

- ▶ structured grid
 → stencil formulation
- low memory cost
- ► many independent calculations → well parallelisable
- exact solve on coarsest grid marginally more efficient than approximated solve
- OpenCL speeds things up by a factor of up to 3 on larger meshes
- ► no speed-up on small meshsizes → overhead of moving to GPU dominant

Overview	Stokes Equations	Geometric Setup	GMRES and Multigrid	First Results	Summary	Future Work

FUTURE WORK

- Adding MPI to the mix
 - ► Goal: Taking advantage of heterogeneous systems
 - ► Plan: MPI-based partitioning with one GPU per MPI thread
 - ► Complications in communication: $GPU \rightarrow MPI \rightarrow MPI \rightarrow GPU$
- Vanka relaxation

Slow in serial (Braess-Sarazin better choice), potential benefits in parallel

- ► efficient Galerkin coarsening on GPU
- direct solve on GPU?

Thank you!