halo exchanges	Tausch to the rescue	performance model	future work
00	0000000	000	0

Halo Exchanges and Tausch

Lukas Spies

Scientific Computing Seminar University of Illinois

2nd October 2018

halo exchanges	Tausch to the rescue	performance model	future work
•0	0000000	000	0

Sample problem:

5-point stencil on two sub-partitions of some domain

Stencil weights known, node values unknown \Rightarrow Need for communication!

halo exchanges	Tausch to the rescue	performance model	future work
00	0000000	000	0

Solution: Store extra values as halo around domain

New problem: Need to keep updating halos

halo exchanges	Tausch to the rescue	performance model	future work
00		000	0

Existing Solutions:

- ► Libraries like MSG (previously used in Cedar) → complicated API, not designed for parallel computing
- Custom implementation
 - \rightarrow development work needs to be repeated for every project, takes time away from actual development

 \Rightarrow Tausch to the rescue!

halo exchanges 00	Tausch to the rescue ○●○○○○○○	performance model 000	future work 0

Glossary:

- remote halo: values needed by one sub-partition that are computed on another sub-partition.
- local halo: values computed by one sub-partition that are needed by another sub-partition.

halo exchanges	Tausch to the rescue	performance model	future work
00	0000000	000	0

Tausch overview:

- 1. **Defining halo info:** addLocalHaloInfo() addRemoteHaloInfo()
- 2. Extract values of halo: packSendBuffer()
- 3. Send/Recv values: send() recv()
- 4. **Move received values back into main buffer:** unpackRecvBuffer()

```
halo exchanges
                      Tausch to the rescue
                                                      performance model
                                                                                      future work
                       00000000
#include "tausch.h"
int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);
    Tausch<double> *tausch = new Tausch<double>(MPI DOUBLE, MPI COMM WORLD);
     (...)
    int haloidSend = tausch->addLocalHaloInfo(sendindices);
    int haloidRecv = tausch->addRemoteHaloInfo(recvindices);
     (...)
    tausch->packSendBuffer(haloidSend, 0, buf);
    tausch->send(haloidSend, 1, right);
    tausch->recv(haloidRecv, 1, left);
    tausch->unpackRecvBuffer(haloidRecv, 0, buf);
     (...)
    MPI Finalize();
    return 0;
```

nalo e po	xchanges	Tausch to the rescue	performance model 000	future work 0
	Tausch< doubl	<pre>.e> *tausch = new Tausch<doub< pre=""></doub<></pre>	Le>(MPI_DOUBLE, MPI_COMM_WORLD);

Constructing new Tausch object:

- templated library: can be used with any data type supported by MPI
- ► To duplicate or not to duplicate communicator

alo exchanges 00	Tausch to the rescue	performance model 000	future work o
			
int haloidSer	nd = tausch->addLocalHaloInf	o(sendindices);	
int haloidRed	cv = tausch->addRemoteHaloIn	fo(recvindices);	

Two ways to specify halo indices:

halo exchanges	Tausch to the rescue	performance model	future work
00	0000000	000	0

Some design considerations:

- Using MPI persistent communication decreases overhead on repeated calls to send/recv.
- Multiple buffers can be combined into one message
- Multiple values per point can be combined into one message
- Aligned memory buffers

Performance model in 2D:	
$T_{perf} = 2nT_{b2h,nseq} + 2nT_{b2h,seq} + 4nT_{MPI,send/recv} + 2nT_{h2b,seq} + 2nT_{h2b,nseq}$	
$T_{perf} :=$ Performance prediction	
n := number of points in one dimension	
$T_{b2h,seq} :=$ Time to copy one value from buffer to halo, sequential memory access	
$T_{b2h,nseq} :=$ Time to copy one value from buffer to halo, non-sequential memory acc	ess
$T_{h2b,seq} :=$ Time to copy one value from halo to buffer, sequential memory access	
$T_{h2b,nseq} :=$ Time to copy one value from halo to buffer, non-sequential memory access	ess
$T_{MPI,send/recv}$:= Time to send one value using MPI communication	
▲	

Performance Model

naio exchanges lausch	to the rescue	performance model	future work
00 00000	0000	000	0

halo exchanges	Tausch to the rescue	performance model	future work
00	0000000	000	•

Current status and future work:

- Tausch is used already by Cedar, integration into PlasCom2 in progress
- Performance model demonstrates achievement of expected performance
- API very simple and straightforward \rightarrow easy integration
- ► CPU/GPU communication still incomplete/unverified
- Small paper planned