
GMRES with Multigrid

Lukas Spies

24th October 2019

Scott MacLachlan, Thomas Benson, Luke Olson

Stokes Equations

−∇ · (νε(u)) +∇p = f (1)

∇ · u = 0 (2)

→ assuming ν to be constant simplifies (1) to

−ν∇2u +∇p = f

Weak form: Find u ∈ H1
0 (Ω) and p ∈ L2(Ω)/R such that

a(u, v) + b(v, p) = (f, v) ∀v ∈ H1
0(Ω)

b(u, q) = 0 ∀q ∈ L2(Ω)/R

⇒
[
A B
BT 0

] [
u
p

]
=

[
f
0

]

Taylor-Hood elements

Q2 elements for velocity - Q1 elements for pressure

→ known to be inf-sup stable

→ equally spaced, regular structure

Stencil structure

Stencil structure

Stencil structure

Stencil structure

Stencil extraction

Number of non-zeros per row (Laplacian):

nodes x-edges y-edges centers Total
nodes 9 6 6 4 25

x-edges 6 3 4 2 15
y-edges 6 4 3 2 15
centers 4 2 2 1 9

→ Natural consequence: localised stencil-based calculations

→ Stencils independent from each other ⇒ parallelisable

GMRES

Initial system
Ax = b

GMRES minimises 2-norm of residual

||rm||2 = ||b− Axm||2

over all vectors in the Krylov-subspace

x0 +Km(A, r0) = x0 + span{r0,Ar0, ...,Am−1r0}.

(Right-)preconditioning:

AM−1u = b

u = Mx

→ V-Cycle with rediscretisation on coarser grids

Braess-Sarazin

”Ideal” Braess-Sarazin update:[
u
p

]new
=

[
u
p

]old
+ ωBS

[
tD B
BT 0

]−1
([

f
g

]
− A

[
u
p

]old)

→ factorised system[
tD 0
BT S

] [
I 1

tD
−1B

0 I

] [
δu
δp

]
=

[
ru
rp

]
with Schur complement

S = −1

t
BTD−1B

Braess-Sarazin

→ compute S exactly

→ approximately solve for solution using

Sδp = rp −
1

t
BTD−1ru (3)

δu =
1

t
D−1(ru − Bδp). (4)

with one sweep of weighted Jacobi on (3), plugging solution into
(4).

→ parameter choice: t = 1.1, ω = 0.7
(based on small experiments)

Fine-Scale Parallelism

GMRES: matrix-vector and vector-vector calculations
→ easy parallelisation

Multigrid: matrix-vector and vector-vector calculations
→ easy parallelisation

interpolation/restriction
→ easy parallelisation

Braess-Sarazin: matrix-vector and vector-vector calculations
→ easy parallelisation

Solve with S : weighted Jacobi
→ easy parallelisation

Calculate δu, δp: matrix-vector and vector-vector calculations
→ easy parallelisation

GPU considerations

I fine-grain parallelism perfect for GPU’s

I implemented using OpenCL

I additional cost of communication

→ moving initial data to GPU

→ moving final solution back to CPU

I Galerkin coarse-grid operators expensive

I direct solver on GPU?

Remarks on Numerical Experiments

I VCycle preconditioner

possible solve on coarsest grid:

1. approximate: Braess-Sarazin smoother

2. exact: UMFPACK library on CPU

I GPU/CPU calculations identical
(up to floating-point error)

I CPU: Intel Xeon E5; GPU: NVIDIA GeForce TITAN X

Speedup comparison

4 8 16 32 64 128 256 512 1024
square root of dimension

1

10

100

1,000

10,000

ru
nt

im
e

[m
s]

GMRES solve with Multigrid V-Cycle preconditioner
CPU solve (OpenMP)
GPU solve (OpenCL)
optimal scaling

Summary

I structured grid
→ stencil formulation

I low memory cost

I many independent calculations
→ well parallelisable

I OpenCL speeds things up by a factor of up to 4 on larger
meshes

I on small meshes CPU performs better
→ overhead of moving to GPU dominant

Future Work

I CUDA version

I Vanka relaxation

Slow in serial (Braess-Sarazin better choice), potential
benefits in parallel

I efficient Galerkin coarsening on GPU

I direct solve on GPU?

Thank you!

	Stokes Equations
	Geometric Setup
	GMRES and Multigrid
	First Results
	Summary
	Future Work
	

