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Abstract
In recent years, solvers for finite-element discretizations of linear or linearized saddle-point problems, like the Stokes
and Oseen equations, have become well established. There are two main classes of preconditioners for such systems:
those based on a block-factorization approach and those based on monolithic multigrid. Both classes of preconditioners
have several critical choices to be made in their composition, such as the selection of a suitable relaxation scheme
for monolithic multigrid. From existing studies, some insight can be gained as to what options are preferable in
low-performance computing settings, but there are very few fair comparisons of these approaches in the literature,
particularly for modern architectures, such as GPUs. In this paper, we perform a comparison between a Block-
Triangular preconditioner and monolithic multigrid methods with the three most common choices of relaxation scheme
– Braess-Sarazin, Vanka, and Schur-Uzawa. We develop a performant Vanka relaxation algorithm for structured-grid
discretizations, which takes advantage of memory efficiencies in this setting. We detail the behavior of the various
CUDA kernels for the multigrid relaxation schemes and evaluate their individual arithmetic intensity, performance, and
runtime. Running a preconditioned FGMRES solver for the Stokes equations with these preconditioners allows us
to compare their efficiency in a practical setting. We show that monolithic multigrid can outperform Block-Triangular
preconditioning, and that using Vanka or Braess-Sarazin relaxation is most efficient. Even though multigrid with Vanka
relaxation exhibits reduced performance on the CPU (up to 100% slower than Braess-Sarazin), it is able to outperform
Braess-Sarazin by more than 20% on the GPU, making it a competitive algorithm, especially given the high amount of
algorithmic tuning needed for effective Braess-Sarazin relaxation.
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Introduction
Finite-element discretizations are a popular choice for
coupled systems such as magnetohydrodynamics (MHD),
or the Stokes or Navier-Stokes equations. Even though
solvers for finite-element discretizations of such saddle-
point problems are well established, designing efficient and
scalable solvers on emerging computing architectures for
such systems remains an ongoing challenge (Dou and Liang
2023; Nataf and Tournier 2022; Ershkov et al. 2021).

Here, we focus on preconditioned Krylov methods for
the linear or linearized systems of equations that arise
in solving such problems. There are two main classes of
preconditioners for such systems: preconditioners based on
block-factorization approaches (Elman et al. 2005; Benzi
et al. 2005; Notay 2019) and those based on monolithic
multigrid principles (Brandt and Dinar 1979; Voronin et al.
2022). Within each class there is considerable variability in
their building blocks, such as the choice of relaxation scheme
in monolithic multigrid, including Braess-Sarazin (Braess
and Sarazin 1997; Zulehner 2000), Vanka (Vanka 1986), and
Schur-Uzawa (Maitre et al. 1984) relaxation.

From existing studies (Adler et al. 2016; Farrell et al.
2021; Voronin et al. 2022; Adler et al. 2023) some insight
can be gained into which algorithms are preferable in
serial (low-performance) computing settings, but there are

relatively few fair comparisons of these approaches in
literature (John and Tobiska 2000b; Paisley and Bhatti
1998; Larin and Reusken 2008a; Adler et al. 2017), in
particular for geometric multigrid on modern architectures,
such as GPUs. This is particularly important given changes
in prevailing HPC architectures in the past two decades.
In (Greif and He 2021; Farrell et al. 2021) it is observed that
monolithic multigrid with Vanka relaxation leads to scalable
performance mathematically and that additive variants of
Vanka are well-suited for implementation on modern GPUs
but, to our knowledge, no performance studies support this
claim. As we discuss below, one main difficulty in getting
good performance out of the Vanka algorithm is the high
cost of memory movement for forming the various Vanka
patches and updating the global solution, which requires
a careful approach to achieve good performance. Similar
issues have recently been considered using related additive
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Schwarz relaxation schemes within multigrid applied to the
Poisson equation (Munch and Kronbichler 2023), where it
was found that, with optimization of memory caching and
reducing communication between patches, additive Schwarz
methods built around cell-centric patches are capable
of outperforming optimized point-Jacobi-based relaxation
schemes.

More broadly, the parallel scalability of multigrid algo-
rithms on modern architectures faces many challenges
related to indirection and increased coarse-grid communica-
tion costs (Bienz et al. 2016, 2020). This makes data locality
and the cost of data movement a central issue, but one that
can be solved by carefully exploiting structure in the problem
as is done, e.g., in black box multigrid (BoxMG) algo-
rithms (Dendy 1982; Reisner et al. 2018, 2020). In this work,
we use highly structured meshes that allow us to encode
various information about the data and how it is accessed
in the structure itself, similarly to the BoxMG paradigm.
Notably, we work with a structured matrix representation
and implement algorithms that take full advantage of this, in
order to minimize memory accesses and maximize floating
point operations (arithmetic intensity).

In this paper, we first introduce the Stokes equations as our
model problem and provide an overview of their structure
and resulting discretization. We then introduce two different
preconditioners for the FGMRES algorithm used to solve
such equations, monolithic multigrid and the upper Block-
Triangular preconditioner. For monolithic multigrid, we
introduce three different relaxation schemes, Braess-Sarazin,
Vanka, and Schur-Uzawa. As Braess-Sarazin and Vanka are
two common choices for relaxation schemes, we focus our
performance analysis on these, noting that Schur-Uzawa can
be implemented with the same kernels as Braess-Sarazin.
After illustrating which kernels are the biggest contributors
to each algorithm, we then break the performance analysis
into two parts: common kernels (matrix-vector and array
operations) and Vanka-specific kernels (forming patches,
updating the global solution, solving patch systems). For
each part, the arithmetic intensity, performance, and runtime
are analyzed in order to gain a full understanding of the
algorithms and how they compare. This leads to a roofline
model to investigate how much better the kernels could
be doing, if at all. To finish our performance analysis, we
compare a full solve of the Stokes equations using FGMRES
preconditioned with both a Block-Triangular preconditioner
and a multigrid V-cycle preconditioner with Braess-Sarazin,
Vanka, and Schur-Uzawa as relaxation schemes. We show
that Vanka is, indeed, a competitive algorithm on modern
architectures with careful design. We also show that simply
porting a performant CPU implementation of Vanka directly
to the GPU is not sufficient for achieving competitive
performance.

The Stokes equations and their
discretization

Problem setup
Fluid flow where viscous forces are much greater than
advective inertia is called Stokes flow. In nature, flow with
such properties occurs in many places, e.g., in geodynamics

or in the swimming movement of microorganisms. The
equations of motions arising from this flow are called the
Stokes equations and can be viewed as a simplification of
the steady-state Navier-Stokes equations in the limit of small
Reynolds number, Re≪ 1. They are not only well-suited to
be solved by iterative solvers (ur Rehman et al. 2011), but
they also serve as a suitable prototype for a wide range of
models that lead to saddle-point structure.

Specifically, we consider the incompressible Stokes
equation with constant viscosity ν in the unit-square domain
Ω = [0, 1]2 ∈ R2. The equations are given by

−ν∇2u+∇p = f , (1)
∇ · u = 0. (2)

Dirichlet boundary conditions on velocity are enforced on all
edges of the domain, but no boundary conditions are imposed
on pressure. Here, we consider no-flux boundary conditions,

u · n = 0 on ∂Ω, (3)

where n is the outward pointing normal vector. Thus, we
define the Hilbert space H1

0(Ω) as

H1
0(Ω) = {v ∈ H1(Ω) : v · n = 0 on ∂Ω} (4)

and L2(Ω)/R as the quotient space of equivalence classes of
functions in L2(Ω) differing by a constant. The weak form is
then defined as: Find (u, p) ∈ H1

0(Ω)× L2(Ω)/R such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω) (5)

b(u, q) = 0 ∀q ∈ L2(Ω)/R (6)

where

a(u,v) = ν

∫
Ω

∇u : ∇v, (7)

b(v, p) =

∫
Ω

p∇ · v. (8)

We work with a manufactured solution (Ayuso de Dios et al.
2014; Adler et al. 2017) that satisfies the properties above,
given by

u(x, y) =

{
x(1− x)(2x− 1)(6y2 − 6y + 1)

y(y − 1)(2y − 1)(6x2 − 6x+ 1)
(9)

p(x, y) = x2 − 3y2 +
8

3
xy, (10)

with f computed to satisfy (1). A visualization of this
solution is found in Figure 1.

Discretization
We consider the standard Q2–Q1 Taylor-Hood mixed finite-
element discretization on a uniform grid for discretizing
the system in Equations (1) and (2). For the velocity, this
uses Q2 elements, with biquadratic polynomials for each
component on each element as a basis. For the pressure, this
uses Q1 elements, with bilinear polynomials on each element
as a basis. Both velocities and pressures are required to be
continuous across element boundaries. An illustration of the
degrees of freedom in these elements is shown in Figure 2.
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Figure 1. Visualization of three components of the
manufactured solution.
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Figure 2. Illustration of the degrees of freedom for a Q2 and
Q1 element, with different types of degrees of freedom
identified by different shapes.

The resulting Q2 and Q1 elements have a total of nine and
four degrees of freedom per element, respectively. Such a
discretization of the Stokes equations directly relates back to
the weak form as shown in Equations (5) and (6), defining
the matrices L and B by

Li,j = a(ψj , ψi) (11)
Bk,j = b(ψj , ϕk). (12)

It is important to note that the introduction of a basis gives us
two “views” on the finite-element approximations, writing
u =

∑
i uiψi and p =

∑
k pkϕk, so we can consider the

functions u and p directly, or think about their coefficients
in the basis expansion, {ui} and {pk}. In what follows,
we follow the usual convention of overloading the notation
u and p to denote both the functions themselves and the
vectors of basis coefficients, with the distinction typically
clear from context, in thatLu is the matrix acting on the basis
coefficients, while a(u,v) is the bilinear form evaluated on
the function. With this matrix representation, the solution of
the weak form can be expressed as that of the linear system[

L BT

B 0

] [
u
p

]
=

[
f
0

]
(13)

where L is the discretized Laplacian, B and BT are the
discretized divergence of u and gradient of p, respectively, u
and p are the discretized velocity and pressure components
of the solution, and f is the velocity component of the right-
hand side. In what follows, to save space, we will write the
2× 2 block matrix in Equation (13) as A.

Such a system is challenging to solve, as it is symmetric
but indefinite due to the zero block in the lower right-hand
corner of the system matrix. This causes many common
iterative methods (e.g., simple stationary methods like Jacobi

and Gauss-Seidel) to not work as they typically involve
inverting the diagonal of the system matrix. Study of
numerical methods for solution of such saddle-point systems
is a well-established discipline (Benzi et al. 2005). One
possible solution to these challenges is the use of block
preconditioners, based on the block LU factorization of the
coupled system. This approach has been well-developed
for discretizations of the Stokes equations (Benzi et al.
2005; Elman et al. 2005). However, existing studies (Adler
et al. 2017) suggest that monolithic preconditioners can
be more efficient. Thus, we also consider monolithic
multigrid as preconditioner for FGMRES. We note that
monolithic multigrid preconditioners are generally not
symmetric and positive definite and, so, they cannot be used
directly as preconditioners for MINRES; however, the added
computational work for orthogonalization in FGMRES is
more than made up for by the quick convergence of the
monolithic multigrid approach.

Structured matrix representation

Any iterative solver naturally depends on calculations
of matrix-vector products for the block-structured matrix
in Equation (13). In general, such calculations require
indirect addressing, when arbitrary numbers of elements
can be adjacent to each node of the mesh, leading to
irregular communication patterns. However, when we restrict
the mesh to have logically rectangular structure (meaning
that each node is at the intersection of four edges, and is
adjacent to four elements), then applying the discretization
matrix can be done in a stencil-wise fashion, where each
degree of freedom requires information from at most
a 2× 2 element patch. This allows storing the system
matrices in a highly efficient data structure by numbering
the degrees of freedom in lexicographic order. For the
Q1 discretization, this ordering is natural, since the only
degrees of freedom occur at the nodes in the mesh, that can
be labeled lexicographically by (x, y)-indices. For the Q2
discretization, we separate the degrees of freedom into four
sets, given by those associated with the nodes of the mesh,
then those at midpoints of the x and y edges, and, finally,
those associated with the cell centers. Figure 3 shows a local
numbering of those degrees of freedom on the 2× 2 patch
around a node.

1 2 3

4 5 6

7 8 9

10 11

12 13

14 15

16 17 18

19 20 21

22 23

24 25

Figure 3. Local numbering of degrees of freedom around nodal
degree of freedom 5.
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With this ordering, the system matrix is stored as an array
of arrays, where the first (outer) array index corresponds to
the row in the matrix associated with that degree of freedom,
and the inner arrays stored at each outer index contain a fixed
number of entries corresponding to the number of degrees of
freedom surrounding the respective degree of freedom, with
the respective columns implicitly stored by the positions in
the inner array. Thus, the inner arrays have a fixed length
of 9 for Q1 elements and a fixed length of 25 for the nodal
degree of freedoms for Q2 elements (with the ordering given
in Figure 3). Such a matrix format corresponds to a hybrid
of the ELLPACK and the SELL-n matrix formats (Rice and
Boisvert 1985; Anzt et al. 2014), as we use padding to always
store the full stencil and, thus, have a consistent row length,
but we also use a (variable) blocksize n with each type of
degree of freedom forming its own block. Exploiting the
structure of our setup enables us to avoid having to store
any indices or pointers, as this information is encoded in the
structure itself. Thus we are able to minimize the memory
storage needed and maximize the performance, as only a
small amount of memory needs to be loaded and read for any
operation. Figure 4 illustrates how the matrix entries for the
different types of degrees of freedom are stored in memory,
with each box corresponding to one inner array.

node nn: 1 2 . . . 25

...

node 1: 1 2 . . . 25

node 0: 1 2 . . . 25

x-edge nx: 1 2 . . . 15

...

x-edge 1: 1 2 . . . 15

x-edge 0: 1 2 . . . 15

y-edge ny: 1 2 . . . 15

...

y-edge 1: 1 2 . . . 15

y-edge 0: 1 2 . . . 15

center nc: 1 2 . . . 9

...

center 1: 1 2 . . . 9

center 0: 1 2 . . . 9

Figure 4. Illustration of how matrix entries are stored in
memory for the four different groups of degrees of freedom.

This approach translates directly to higher dimensions.
For a 3D discretization of this type on “brick” elements,
we would extend the above to 2× 2× 2 element patches
with 5× 5× 5 = 125 nodal degrees of freedom (5 in each
dimension). These can be labeled in an analogous way and,

consequently, stored similarly in a single array of arrays, with
outer index corresponding to the rows in the system matrix,
and inner index corresponding to the local numbering around
each degree of freedom.

Multigrid
Multigrid methods are based on the notion that standard (but
slow-to-converge) iterative methods are generally effective
at reducing oscillatory errors in a discrete approximation,
but that the subspace of smooth and slow-to-converge errors
of such an iteration is better treated by a complementary
process (Briggs et al. 2000; Trottenberg et al. 2001).
A natural approach to reduce the smooth errors is with
correction from a coarser-grid realization of the same
discretized problem, where those smooth modes can be
accurately resolved by recursively applying the same
iterations to problems with fewer degrees of freedom, until
some suitably coarse version of the problem is found where
a sparse direct solver can be effectively applied. For higher-
order discretizations and systems of PDEs, such an error
classification breaks down (He and MacLachlan 2020), but
the multigrid principle remains effective, in that we can
define relaxation schemes that effectively damp a large
portion of the error in a given approximation, and the
remaining error can be effectively corrected from a coarse
grid.

The standard multigrid solution algorithm is known as the
V-cycle, since it traverses a given hierarchy of meshes from
the given finest grid to the coarsest, then back to the finest. In
the “downward” sweep of the traversal (from fine-to-coarse),
on each level, an initial approximation (generally a zero
vector) is improved by a specified relaxation scheme. Then,
the residual associated with that improved approximation
is calculated and restricted to the next coarsest grid, where
the scheme recurses. On the “upward” sweep, the current
approximation is improved by interpolating a correction back
from the next coarser grid, then running relaxation again,
before proceeding to the next finer grid. For transferring
residuals and corrections between grids, we define a single
interpolation operator that maps from a coarse grid to the
next finer grid, and use its transpose as a restriction operator.
In this work, we follow the standard geometric multigrid
approach of using the finite-element interpolation operators,
that naturally map from coarse-grid versions of the Q2 and
Q1 spaces to their fine-grid analogues. Algorithm 1 presents
an algorithmic overview of the multigrid V-cycle for the
Stokes equations, following the convention that level 0 is the
coarsest grid in the hierarchy, and we are interested in the
solution on some given fine grid, for fixed l > 0.

While traditional relaxation schemes, such as (weighted)
Jacobi or Gauss-Seidel are effective for elliptic problems,
they generally cannot be applied directly to saddle-point
systems, due to the zero block in the matrix. Thus,
specialized relaxation schemes are commonly developed
and analyzed for the Stokes equations. In this work,
we consider four different preconditioning approaches,
comparing monolithic multigrid with Braess-Sarazin (Braess
and Sarazin 1997; Zulehner 2000), Vanka (Vanka 1986), and
Schur-Uzawa (Maitre et al. 1984) relaxation with an upper
Block-Triangular preconditioner. We focus in particular on
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Algorithm 1 Multigrid V-cycle for Stokes equations
1: function MG(Al, ul, pl, fl, gl, l)
2: Relax on ul and pl

3: Compute residual:
[
ru,l
rp,l

]
=

[
fl
gl

]
−Al

[
ul

pl

]
4: Restriction:

[
ru,l−1

rp,l−1

]
= PT

l−1

[
ru,l
rp,l

]
5: if l is 1 then
6:

[
eu,0
ep,0

]
= A−1

0

[
ru,0
rp,0

]
7: else
8:

[
eu,l−1

ep,l−1

]
= MG(Al−1,0, 0, ru,l−1, rp,l−1, l − 1)

9: end if
10: Correction:

[
ul

pl

]
=

[
ul

pl

]
+ Pl−1

[
eu,l−1

ep,l−1

]
11: Relax on ul and pl
12: end function

the former two, Braess-Sarazin and Vanka, as these are
known to lead to effective monolithic multigrid methods, but
also expose key kernels that are reused in the implementation
of the latter two. We next provide an overview of all four
algorithms, before focusing on aspects of implementation
and performance when implementing these approaches on
the GPU.

Braess-Sarazin relaxation scheme
The Braess-Sarazin iteration is based on an approximation of
the block factorization of the system matrix in (13),[

L BT

B 0

]
=

[
L 0

B Ŝ

] [
I L−1BT

0 I

]
, (14)

for Ŝ = −BL−1BT . The original algorithm (Braess and
Sarazin 1997) proposed replacing the matrix, L, in the
above by a scaled version of its diagonal, tD, for scalar t,
and updating the current approximation by an under-relaxed
solve of the saddle-point system with this replacement,[

u
p

]new
=

[
u
p

]old
+ ωBS

[
tD BT

B 0

]−1 [
ru
rp

]old
(15)

where ru and rp are the respective residuals. For simplicity,
we fix ωBS = 1 in what follows. This is equivalent
to computing the (unweighted) updates, δu and δp, as
approximate solutions of the block-factorized approximation
to the system matrix,[

tD 0
B S

] [
I 1

tD
−1BT

0 I

] [
δu
δp

]
=

[
ru
rp

]
(16)

where S = − 1
tBD

−1BT is the Schur complement of the
approximated system. Equation (16) can be rewritten as two
equations

Sδp = rp −
1

t
BD−1ru, (17)

δu =
1

t
D−1(ru −BT δp). (18)

The inexact variant of Braess-Sarazin (Zulehner 2000) only
approximately computes the solution to Equation (17),

using standard weighted Jacobi (or other algorithms) to
approximate the inverse of S (see also (He and MacLachlan
2019). The full algorithm is given in Algorithm 2.

Algorithm 2 Braess-Sarazin relaxation
1: Approximately solve Sδp = rp − 1

tBD
−1ru for δp by

relaxation.
2: Compute δu = 1

tD
−1(ru −BT δp).

3: Update pnew = pold + ωBSδp.
4: Update unew = uold + ωBSδu.

Vanka relaxation scheme
Vanka relaxation, in contrast, applies a block overlapping
Schwarz iteration to the global saddle-point system. In this
approach, we define sets of “patches” (or “subdomains” in
the usual Schwarz notation) corresponding to 2× 2 blocks of
elements, where we take a single pressure degree of freedom
at the central vertex and all velocity degrees of freedom
on the associated (neighboring) elements, see Figure 5. For
each patch, we define a restriction operator, Vi, that extracts
degrees of freedom from the global matrix to those present
on local patch i, and use this to restrict the system matrix to
the ith patch, as

Ai = ViAV
T
i (19)

The Vanka algorithm is defined by looping over the patches
and solving

Ai

[
δui

δpi

]
= Vi

[
ru
rp

]
(20)

exactly for δui and δpi, which are then used to update the
global approximate solution in a weighted additive manner.
The Vanka algorithm is given in Algorithm 3. We note

Figure 5. Illustration of overlapping 2× 2 Vanka patches

that we solve the patch systems exactly by inverting each
patch matrix ahead of time, as they do not change between
iterations.

Algorithm 3 Vanka relaxation (additive)
1: for i = 1, . . . , N do

2: Solve Ai

[
δui

δpi

]
= Vi

[
ru
rp

]
for

[
δui

δpi

]
.

3: end for
4: Update

[
unew

pnew

]
=

[
uold

pold

]
+ΣN

i=1V
T
i Wi

[
δui

δpi

]
.

where Wi is the matrix with the weights.
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Schur-Uzawa relaxation scheme
The Schur-Uzawa iteration is derived in a similar way
to the Braess-Sarazin iteration. It is again based on an
approximation of the factorization of the system matrix
in (13), [

L BT

B 0

]
=

[
L 0

B Ŝ

] [
I L−1BT

0 I

]
, (21)

for Ŝ = −BL−1BT . As in Braess-Sarazin, we again replace
the matrix, L, by some approximation that is easy to
invert, again denoted tD, but also drop the upper-triangular
term from this factorization, resulting in an inexact system
computing updates, δu and δp, as approximate solutions of
the block system,[

tD 0

B Ŝ

] [
δu
δp

]
=

[
ru
rp

]
. (22)

The system in (22) can be rewritten as two equations

tDδu = ru (23)
Sδp = Bδu− rp (24)

that are solved for δu by directly inverting tD and for δp by
standard weighted Jacobi to approximate the inverse of S =
− 1

tBD
−1BT . The full algorithm is given in Algorithm 4.

Algorithm 4 Schur-Uzawa relaxation
1: Compute δu = 1

tD
−1ru.

2: Approximately solve Sδp = Bδu− rp for δp by
relaxation.

3: Update pnew = pold + δp.
4: Update unew = uold + δu.

Block-Triangular preconditioner
The Block-Triangular preconditioner is also based on an
approximation of the system matrix in (13), but we now
consider an alternate form with unit block diagonal for the
lower-triangular factor,[

L BT

B 0

]
=

[
I 0

BL−1 I

] [
L BT

0 Ŝ

]
, (25)

with Ŝ = −BL−1BT . While Braess-Sarazin and Schur-
Uzawa relaxation use simple approximations to L and Ŝ
to approximate the inverse for relaxation within a multigrid
cycle, it is more common to use multigrid on the blocks
when using the block preconditioner directly. Here, as is
common (Elman et al. 2005), we first approximate Ŝ by
a mass matrix, −M , on the pressure space, then apply
multigrid to this approximation. With this, we compute
updates, δu and δp, as approximate solutions of the upper-
triangular approximation to the system matrix,[

L BT

0 −M

] [
δu
δp

]
=

[
ru
rp

]
, (26)

using multigrid V-cycles to approximately invert L and M .
The system in (26) can be rewritten as two equations

−Mδp = rp (27)

Lδu = ru −BT δp, (28)

leading to the full algorithm given in Algorithm 5.

Algorithm 5 Block-Triangular preconditioner
1: Approximately solveMδp = −rp for δp using multigrid

on M .
2: Approximately solve Lδu = ru −BT δp for δu using

multigrid on L.
3: Update pnew = pold + δp.
4: Update unew = uold + δu.

Our implementation
We have implemented the outer FGMRES iteration and
a multigrid V-cycle with the three relaxation schemes,
Vanka, Schur-Uzawa, and Braess-Sarazin, as well as the
Block-Triangular preconditioner, in C++, with custom data
structures that provide structured matrix implementations
of the required matrix and vector operations, as discussed
above. This is achieved by using operator overloading to
allow the optimization of the code for different architectures
while preserving a clean implementation of the high-
level algorithms. Underlying the custom data structures are
standard STL vectors of double data type. Additionally,
support for CUDA and OpenCL requires only a switch of
the backend implementation while the high-level algorithm
implementation remains largely untouched.

The resulting implementation yields an efficient solution
algorithm for the incompressible Stokes equations in two
dimensions on both the CPU and the GPU. We limit our
attention to optimizing implementations for a single CPU
node or single GPU and focus on comparing performance
using the different algorithms, taking advantage of the
underlying structure. In principle, similar performance is
expected for other discretizations of Stokes and other saddle-
point problems, in two and three dimensions, but studying
performance in these contexts is left for future work. We
also do not consider extending this work to MPI-based
parallelism or multi-GPU systems.

Existing work
John and Tobiska (2000a) investigate the performance of
multigrid paired with Braess-Sarazin for solving the Stokes
equations using P1-P0 finite elements. In the case of a W-
cycle, the improvement in error reduction is approximately
linear with the number of smoothing steps. For a V-cycle,
convergence increases in general with increasing level of
refinement. The work shows that multigrid paired with
Braess-Sarazin is indeed a robust and reliable preconditioner.

Larin and Reusken (2008b) compares use of a coupled
multigrid method with Vanka and Braess-Sarazin type
relaxation schemes, along with preconditioned MINRES and
an inexact Uzawa method. The focus is on solving the Stokes
equations on the then-current hardware and architectures.
The results show that all four methods are robust with respect
to variations in parameters. The conclusion is that a multigrid
W-cycle paired with diagonal Vanka results in the most
efficient solver in terms of CPU time.

More recently, Adler et al. (2017) compare of a fully-
coupled monolithic multigrid paired with Braess-Sarazin
or Vanka as relaxation scheme, and a block-factorization
preconditioner similar to the one we presented here. On
CPU-only systems, multigrid paired with Vanka results in
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the best scaling and lowest iteration count. Yet, these solvers
require significantly more work per iteration than the other
preconditioners. As a result, multigrid paired with Braess-
Sarazin yields the best time-to-solution on CPUs for the
problems studied in that work.

Performance Analysis
By far the most costly component of the monolithic
multigrid-preconditioned FGMRES solver is the relaxation
scheme within the multigrid V-cycle. Thus, we focus our
performance analysis on the implementations of two of
the relaxation schemes, Vanka and Braess-Sarazin, alone,
noting that multigrid with Schur-Uzawa relaxation reuses
only components from that using Braess-Sarazin, while
the Block-Triangular preconditioner also reuses primarily
kernels from Braess-Sarazin relaxation as well.

Studying the performance of these methods requires
careful analysis of memory movement and access. The
standard metric for this is arithmetic intensity, which
quantifies the relationship between floating-point operations
and memory reads and writes. Another important quantity
is the FLOP rate, which describes how many floating-point
operations are performed in a given time frame. The runtime
of the kernels (and how they relate to one-another) indicates
the importance of each kernel when it comes to studying
the performance. We first study and optimize the component
kernels individually, before comparing performance of our
four preconditioners for the FGMRES solver for the Stokes
equations. For measuring the various metrics to evaluate and
compare implementations on the GPU, we use NVIDIA’s
Nsight Compute* and Nsight Systems† software.

Test System
The system we use for each test is the Delta supercomputer‡

located at the National Center for Supercomputing Appli-
cations (NCSA). It is equipped with NVIDIA A100 GPUs
that have a measured peak double-precision floating-point
performance of 9472.34 GFLOP/s, 80GB on-chip memory,
and a measured GPU memory bandwidth of 1264.42 GB/s,
measured using the CS roofline toolkit§. For our final com-
parison of algorithms, we also run on the CPU nodes of
the Delta supercomputer, that carry dual 64-core AMD 7763
processors with a base frequency of 2.45 GHz (max boost
frequency of 3.5 GHz) and a per socket memory bandwidth
of 204.8 GB/s, although we only consider serial runs on a
single core here.

Kernels
To start the analysis of the different kernels, we first present
an overview of each kernel and get a sense of how much
they contribute to the overall runtime. Although the problem
itself and the final parameter choices can have an important
impact on the performance of a kernel, we compare kernels
for a generic case here to provide a baseline.

Algorithm 6 shows the Braess-Sarazin algorithm in
slightly different form than Algorithm 2, to focus on the
kernels involved for the various steps. These kernels are
color-coded for ease of comparing with the cost breakdown
for a single iteration of Braess-Sarazin shown in Figure 6,

indicating how much each kernel contributes to the overall
runtime. (Noting that the percentages may not sum to 100%,
due to rounding.) As is seen (and expected), most of the
runtime is consumed by the matrix-vector operations. Many
of these kernels are reused in the other solvers. We note in
particular that the weighted Jacobi kernel for the pressure
solve, used both for Braess-Sarazin and Schur-Uzawa
relaxation (and in the Block-Triangular preconditioner)
contributes very little to the overall runtime (less than 2%).

Algorithm 6 Braess-Sarazin with kernel breakdowns
1: Compute current residuals, ru and rp.

Q2 matrix * Q2 vector

Q2Q1 matrix * Q2 vector

Q2Q1 matrix * Q1 vector

array operations

2: Form right hand side of Equation (17).
Q2 matrix * Q2 vector

Q2Q1 matrix * Q2 vector

array operations

3: Use Jacobi to compute approximation of δp in Equa-
tion (17).
weighted Jacobi

4: Use δp to compute δu in Equation (18).
Q2 matrix * Q2 vector

Q2Q1 matrix * Q1 vector

array operations

5: Update global solution with δu and δp.
array operations

55.4%

16.5%

14.7%

11.9%

1.4%

Q2 matrix ∗ Q2 vector

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

weighted Jacobi

Figure 6. Braess-Sarazin: Kernels and their proportion of
runtime

A similar kernel-focused restatement of Algorithm 3 is
given in Algorithm 7, with the various kernels color-coded
to correspond to timing breakdown for a single iteration
shown in Figure 7. The left figure in Figure 7 shows the
runtime for what we call “simple Vanka”, where we do not
take advantage of the fact that, for many settings, the Vanka
submatrices are identical for most patches and can, thus, be
stored once and used many times. This approach results in
more than 75% of the runtime being spent applying the patch
matrix inverses as each patch needs to load its own Vanka
submatrix from global memory. The right figure in Figure 7

∗NVIDIA Nsight Compute: https://developer.nvidia.com/
nsight-compute
†NVIDIA Nsight Systems: https://developer.nvidia.com/
nsight-systems
‡Delta supercomputer: https://delta.ncsa.illinois.edu/
§CS Roofline Toolkit: https://bitbucket.org/berkeleylab/
cs-roofline-toolkit
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81.7%

7.0%

4.8%

3.5%
1.5%

Apply inverse

Form patches

Update solution

Q2 matrix ∗ Q2 vector

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

(a)

25.0%24.9%

16.5%

12.6%
10.2%

5.3%

4.0%
1.5%

Form patches

Apply inverse (interior)

Update solution

Q2 matrix ∗ Q2 vector

Apply inverse (exterior)

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

(b)

Figure 7. Vanka: Kernels and their proportion of runtime, both (a) simple and (b) tuned Vanka.

Algorithm 7 Vanka (tuned) with kernel breakdowns
1: Compute current residuals, ru and rp.

Q2 matrix * Q2 vector

Q2Q1 matrix * Q2 vector

Q2Q1 matrix * Q1 vector

array operations

2: Form patch right hand sides of Equation (20)
Q2 matrix * Q2 vector

Q2Q1 matrix * Q2 vector

Q2Q1 matrix * Q1 vector

array operations

form right hand side

3: Apply inverses of patch matrices to patch right hand
sides.
apply matrix inverse (int)

apply matrix inverse (ext)

4: Update global solution.
update global solution

shows the results using a “tuned Vanka” implementation,
where patches that have identical submatrices take advantage
of fast shared memory to optimize memory accesses and, in
turn, improve performance. For a uniform grid as considered
here, Figure 8 sketches the grouping of patches into those
that have a submatrix in common. Here, there are special
cases for patches adjacent to the edges or corners of the
mesh, including those associated with nodes on the boundary
and those distance one from the boundary (where some
degrees of freedom in the patch have Dirichlet boundary
conditions applied), and a general case for all patches at
nodes at least distance two from the boundary. This approach
results in only about 40% of the overall runtime being taken
up by applying patch matrix inverses. In total, just over
three quarters of the runtime in the tuned approach is used
for the four unique-to-Vanka operations. The other portion
is contributed by the same simple matrix-vector operations
as in the analysis of Braess-Sarazin. In what follows, we
focus on tuned Vanka in our performance analysis and show
a comparison of tuned and simple Vanka as part of our
final comparison of relaxation schemes within multigrid-
preconditioned FGMRES.

Vanka patch matrices
GPUs are built around multithreaded streaming multiproces-
sors. Whenever a kernel is launched from the host, all threads
are grouped together into smaller thread blocks, which are

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17

18

19 20 21 22

23

24

25

Figure 8. Vanka: groups of shared patch matrices

then enumerated and distributed to available multiproces-
sors. All threads within a thread block are executed concur-
rently, and all blocks can be executed concurrently. Threads
within a block are able to access local shared memory and
can be synchronized. Additionally, all threads are able to
access global memory. Choosing the right size of block is
essential for good performance, as a too small block size
leads to streaming multiprocessors that remain partially idle,
whereas a too large block size leads to an imbalanced load
over all of the streaming multiprocessors. CUDA is designed
with a maximum of 1024 possible threads per thread block.

Making use of shared and local memory as much as
possible within a CUDA thread block allows us to optimize
memory accesses further, as data that is used repeatedly can
be cached in memory that is faster than global memory.
This is of particular importance for the Vanka algorithm, as
many of the Vanka patches share the same patch matrices,
as discussed above. In total, there are 25 different patch
matrices, as depicted in Figure 8, for a constant-coefficient
Stokes problem on a uniform mesh, independent of the
number of elements. The shaded orange areas in Figure 8
denote single patches that have their own unique patch
matrix. The normal orange areas are one-dimensional areas
along element edges that share the same patch matrix, and
the blue area is the two-dimensional interior region of the
domain, where all patches share the same submatrix. Within
any one of these regions, we can load the patch matrix into
shared memory once, to be used by all threads in the block.
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kernel reads writes flops

Q2 array plus/minus array 2n n n
Q2 array times scalar n+ 1 n n
Q2 matrix ∗ Q2 vector 50 + 160ℓ+ 128ℓ2 n 25 + 80ℓ+ 64ℓ2

Q2Q1 matrix ∗ Q2 vector 50 + 100ℓ+ 50ℓ2 m 25 + 50ℓ+ 25ℓ2

Q2Q1 matrix ∗ Q1 vector 18 + 60ℓ+ 50ℓ2 n 9 + 30ℓ+ 25ℓ2

Braess-Sarazin: weighted Jacobi 2m+ 1 m 2m
Vanka: Form Patch RHS 51 + 102ℓ+ 51ℓ2 51 + 102ℓ+ 51ℓ2 0
Vanka: Apply matrix inverse 2652 + 5304ℓ+ 2652ℓ2 51 + 102ℓ+ 51ℓ2 2601 + 5202ℓ+ 2601ℓ2

Vanka: Update global solution 52 + 104ℓ+ 52ℓ2 52 + 104ℓ+ 52ℓ2 52 + 104ℓ+ 52ℓ2

Table 1. Theoretical reads [double], writes [double] and flops of the various operations with ℓ+ 1 as the number of nodal degrees
of freedom in one dimension, n as the total number of velocity degrees of freedom, and m as the total number of pressure degrees
of freedom.

Arithmetic Intensity
The arithmetic intensity of a kernel is defined as the ratio of
how many floating point operations (flops) are performed per
byte read/written. The algorithms for both Vanka and Braess-
Sarazin involve various general vector and matrix-vector
operations. In addition, Braess-Sarazin requires a weighted
Jacobi application, and Vanka requires operations to extract
the current residuals, to apply the patch matrix inverses, and
to update the global solution. Table 1 denotes the counts of
all reads, writes, and floating points operations (flops) for
the various kernels, obtained by counting the operations in
the algorithms. Note that the Q1 array operations are similar
to the Q2 array operations leading to equivalent arithmetic
intensity and performance values.

Based on the values in Table 1, we compute the arithmetic
intensity of the various kernels. On the GPU (using CUDA),
we use the following formula,

AI =
flops

32(sectors read + sectors written)
. (29)

where the reads and writes are counted per sector. One sector
consists of a total of 32 bytes and, thus, we multiply by that
constant in order to recover the byte count. The performance
of each operation is then computed by

perf =
flops

max
(

32(sectors read + written)
bandwidth , flops

peak perf

) (30)

The theoretical arithmetic intensity and performance
computed this way is shown in Table 2. This analysis,
however, has its limitations. In practice, we expect the actual
arithmetic intensity and performance to be better, as values
are typically not read from or written to memory one-by-
one. Instead, a memory range is typically loaded all at
once, allowing us to reuse values. Additional strategies, like
using shared memory for Vanka patches with the same patch
matrix, further optimize the memory accesses, increasing
both the arithmetic intensity and performance. Similarly,
varying the size of CUDA blocks also has an effect on these
quantities.

Common Kernels
For simplicity, we group the kernels into two classes. First,
we examine those kernels that are common to both Vanka and
Braess-Sarazin relaxation, involving matrix-vector products

kernel AI performance

array plus/minus array 0.0417 52.684
array times scalar 0.0625 79.026

Q2 matrix ∗ Q2 vector 0.0606 76.633
Q2Q1 matrix ∗ Q2 vector 0.0613 77.477
Q2Q1 matrix ∗ Q1 vector 0.0578 73.175

Braess-Sarazin: Jacobi 0.0833 105.368
Vanka: Form Patches 0.0 0.0
Vanka: Apply matrix 0.120 152.088
Vanka: Update solution 0.125 157.744

Table 2. Theoretical AI [flops/byte] and performance
[GFLOP/s], calculated for a 512× 512 element patch.

and array operations. Following this, we analyze the Vanka-
specific kernels.

The common kernels are listed at the top of Figure 9,
where we break down the matrix-vector products producing
Q2 vectors into those that compute values at the nodes,
denoted by n, the x- and y-edge midpoints, denoted by x
and y, respectively, and the cell centers, denoted by c. The
color-coding of these kernels matches that in Figure 6. For
these kernels, we can choose the CUDA block size in an
attempt to improve performance. Figure 9 shows how the
arithmetic intensity, performance, and runtime vary for the
various common kernels with varying CUDA block size.

We first note that the measured arithmetic intensities are
indeed better than the theoretical values described in Table 2,
albeit generally not far off. Additionally, the measured
arithmetic intensity does not vary much (or at all) with
varying CUDA block size. This is due to the nature of the
underlying memory operations, as the structured matrix data
structures used here already optimize the loading and writing
of memory. Due to the global nature of the kernels, they are
not able to take advantage of shared memory on the GPU.
The performance and runtime, however, are impacted by the
CUDA block size, with increases in the performance leading
to decreases in runtime. Over all results, we see differences in
performance of up to a factor of 5 as we vary the block size.
Choosing the best overall parameter comes down to selecting
the best block size for the kernels that contribute the most to
each algorithm.

For Braess-Sarazin, the Q2 matrix by Q2 vector
multiplication makes up more than 50% of the overall
runtime and, thus, choosing the best parameter for the 4
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A: Q2 matrix ∗ Q2 vector (n) F: Q2Q1 matrix ∗ Q1 vector (n) J: array minus array
B: Q2 matrix ∗ Q2 vector (x) G: Q2Q1 matrix ∗ Q1 vector (x) K: array plus array
C: Q2 matrix ∗ Q2 vector (y) H: Q2Q1 matrix ∗ Q1 vector (y) L: array plus array (in place)
D: Q2 matrix ∗ Q2 vector (c) I: Q2Q1 matrix ∗ Q1 vector (c) M: array times scalar
E: Q2Q1 matrix ∗ Q2 vector
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Figure 9. Common kernels: CUDA block size vs. AI, performance, and runtime. 2562 elements in left column, 10242 elements in
right column.

kernels within this operation has the largest impact on the
overall runtime of the algorithm. For both problem sizes, the
best (or near-best, within 2% of the best) runtime for these
4 kernels is achieved for a CUDA block size of 12× 12.
Analyzing the other common kernels yields a very similar
picture. Thus, all of the common kernels achieve peak (or
near-peak) performance for a CUDA block size of 12× 12,
which we choose for the Braess-Sarazin algorithm for which
these kernels dominate the cost. We confirmed that these are
the best choices by timing a full iteration of the algorithm for
both problem sizes. Table 3 provides a concise overview of
the best parameters for both algorithms.

Vanka-Specific Kernels

For the Vanka-specific kernels, we perform a similar analysis
as for the common kernels. For all four kernels, we vary the
thread block size from 4× 4 to 16× 16. Figure 10 shows
how the arithmetic intensity, performance, and runtime
varies with this parameter, again matching the color-coding
used in Figure 7. Here, we notice that the measured
arithmetic intensity is higher than the theoretical analysis
in Table 2, in particular for the kernels applying the patch
inverses. This is expected, as we take advantage of fast
shared memory for storing the shared patch matrices, which
is not accounted for in that analysis. We note, however, that
the arithmetic intensity does not vary much with block size,
remaining largely constant. The kernel updating the global
solution has a comparatively low arithmetic intensity, as it
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A: Apply patch matrix (exterior) C: Update global solution
B: Apply patch matrix (interior) D: Form patches
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Figure 10. Vanka-specific kernels: thread-block size vs. AI, performance, and runtime. 2562 elements in left column, 10242

elements in right column.

consists largely of memory movements and only very few
floating-point operations. Similarly, the kernel forming the
various Vanka patches does not contain any floating-point
operations, resulting in zero arithmetic.

Analyzing the performance of the four kernels shows a
rather similar picture, with the thread block size causing only
small variations in the performance. Even though the kernel
for the exterior patches and the kernel for the interior patches
have a very similar arithmetic intensity, they differ widely in
terms of performance, by up to 2 orders of magnitude. This is
due to the comparatively high amount of work to be done for
the interior patches. Once again, the kernel for forming the
Vanka patches has a performance of 0 GFLOP/s, as it does
not contain any floating point operations.

Both of these metrics, the arithmetic intensity and
performance, are useful for evaluating the different kernels,
but the effective runtime is the defining criteria for which
any set of parameters is, ultimately, the best choice. Even
though the kernels applying the patch matrices to the exterior

patches (A) has a much lower performance than the kernel
applying the patch matrices to the interior patches (B), the
runtime of (A) for the smaller problem size is only about a
factor of 3 larger than that for (B). For the larger problem
size, the runtime of (A) is much lower than that for (B),
by a factor of about 8. This is due to the overall relatively
small amount of computations required for (A), as the
exterior regions only grow linearly with the grid size in each
dimension, whereas the interior region grows quadratically
with (one-dimensional) grid size. Here, we can also see that
the proportional runtime for the kernels (B), (C), and (D)
is very much comparable, as already indicated in the kernel
runtime breakdown in Figure 7.

Next, we investigate the effect of “grouping” computa-
tional threads, by passing more than one Vanka patch off to
single CUDA thread within any one of the regions where the
Vanka patches share the same patch matrix. This reduces the
number of overall threads that need to be launched, while
potentially further improving the memory accesses required.
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Figure 11 shows the runtime of the two sets of kernels
applying the patch matrices for the four different thread
block sizes, grouping patches together in groups of 1 to 64
patches per thread. From Figure 11, we see that increasing
the number of patches per thread typically does not lead to
a faster runtime; at best, the performance remains relatively
constant. Thus, we do not pursue this any further and remain
using one thread per patch.

The four Vanka-specific kernels make up more than 75%
of the overall runtime of a Vanka iteration (see Figure 7),
with each kernel taking up roughly the same proportion
of overall runtime. To avoid unnecessary complexity in the
code, we choose a single CUDA block size to use for the
entire algorithm and all connected kernels. For the smaller
problem size, a CUDA block size of 8× 8 is not the optimal
choice for many of the individual kernels, but all four kernels
exhibit near-peak performance for this CUDA block size. For
the larger problem size, the best choice of CUDA block size
is 12× 12. We have also confirmed that these are the best
choices by timing a full iteration of the algorithm for both
problem sizes. Table 3 provides a concise overview of the
best parameters for both algorithms.

Algorithm # elements threads/block

Braess-Sarazin 2562 12× 12
10242 12× 12

Vanka 2562 8× 8
10242 12× 12

Table 3. Best parameter choices for both algorithms.

Roofline model
Having analyzed the kernels above and selected the optimal
thread block size, we now consider a roofline model to
measure for how efficient the kernels are on a given GPU.
Such models tell us whether an operation is memory or
compute bound, and whether all theoretically available
computing power is used. Figure 12 shows two roofline
models, one for each of the two problem sizes, showing
measured performance vs. arithmetic intensity for each
kernel in a Braess-Sarazin or Vanka relaxation sweep. Here,
we very clearly see that, for the larger problem size, most
kernels lie right on or very close to the performance bound,
meaning that they are running as fast as possible given their
arithmetic intensity. In order to improve their performance,
we would need to find ways to increase their arithmetic
intensity. However, given the nature of these kernels and the
underlying structured matrix data structures, there is not an
obvious avenue to do this.

Even though most of the kernels (all the matrix-vector
and array operations) are clustered together, there are four
outliers in this data that we want to highlight:

1. The first outlier is the kernel corresponding to
forming the Vanka patch submatrices, which is
not visible in the plot, as it consists entirely of
memory movements and no floating-point operations.
Its arithmetic intensity and floating-point performance
are, thus, 0.

2. The second outlier is the kernel applying the patch
matrix inverse to the exterior patches of the domain.
This has a low peak performance of only 6 GFLOP/s,
as it consists of mostly small operations (16 unique
patch matrices, with 8 one-dimensional regions
sharing a patch matrix). It also acts on little enough
data that, even for the large problem size, we do not
achieve the performance expected from the roofline
model.

3. The third outlier is a kernel that we mostly ignored
in our analysis, the weighted Jacobi kernel. This
kernel achieves a higher performance than all but
one other kernel, with a peak performance of 753
GFLOP/s. However, it contributes less than 2% to
the overall runtime of Braess-Sarazin relaxation,
with similar percentages of runtime expected for
the other algorithms that use it. Thus, even though
its performance is rather high, it has barely any
measurable effect on the algorithm runtime.

4. The final outlier is the kernel applying the patch matrix
inverse to the interior patches of the domain. Its peak
performance is roughly 2145 GFLOP/s, almost three
times as high as the next highest kernel. With this high
performance, it still makes up about 20% of the overall
runtime of Vanka. Thus, achieving this performance on
this single kernel results in the overall Vanka algorithm
achieving much better performance.

Overall, we note that most of the kernels achieve
their maximum possible performance, as they lie right
on the performance limit in the roofline model for the
larger problem size. Due to the nature of their operations,
increasing their arithmetic intensity is not possible and,
thus, the performance of these algorithms cannot reasonably
be expected to be increased. One avenue to consider
to improve the performance of the kernels that require
a disproportionately large volume of memory movement
would be to try to “trade” some memory movement for
increasing numbers of floating-point operations; this will be
a subject for future research.

Overall solver performance

Finally, having analyzed and optimized the performance
of the Vanka and Braess-Sarazin relaxation schemes, we
now look to see how they compare in practice, when
used as relaxation schemes inside of a multigrid V-cycle
that is used as preconditioner for FGMRES applied to the
Stokes equations. We will also compare their performances
to the performance of FGMRES preconditioned with a
multigrid V-cycle with Schur-Uzawa and preconditioned
with a Block-Triangular preconditioner with multigrid V-
cycles used to approximate the block inverses. The additional
parameters needed for Schur-Uzawa and the Block-
Triangular preconditioner have been determined through
further experiment. The optimal value of t in the Schur-
complement scheme is 1 with an optimal Jacobi weight
of ω = 0.4. For the Block-Triangular preconditioner, we
determined that a total of 3 V-cycles are necessary for both
the pressure update solve and velocity update solve, and the
two respective weights for the weighted Jacobi relaxation are
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Figure 11. Vanka-specific kernels: Group size vs. runtime for 2562 elements (left) and 10242 elements (right).

10−2 10−1 100 101 102

Arithmetic Intensity [Flop/Byte]

101

102

103

104

P
er

fo
rm

an
ce

[G
F

L
O

P
/

s]

2562

Q2 matrix ∗ Q2 vector (n)

Q2 matrix ∗ Q2 vector (x)

Q2 matrix ∗ Q2 vector (c)

Q2 matrix ∗ Q2 vector (y)
Q2Q1 matrix ∗ Q2 vector
Q2Q1 matrix ∗ Q1 vector (n)

Q2Q1 matrix ∗ Q1 vector (x)

Q2Q1 matrix ∗ Q1 vector (y)

Q2Q1 matrix ∗ Q1 vector (c)
array minus array
array plus array
array plus array (in place)

array times scalar
Apply matrix (int)

Apply matrix (ext)
Update solution
Form patches
weighted Jacobi

10−2 10−1 100 101 102

Arithmetic Intensity [Flop/Byte]

10242

Figure 12. Roofline Model for all kernels

ω = 0.6 for the pressure update solve, and ω = 1.0 for the
velocity update solve.

The choice of outer Krylov method for a linear solve
requires considering many factors. Here, because the
preconditioners are not guaranteed to be symmetric and
positive definite, we must use a general Krylov method
instead of a specialized technique like CG or MINRES.
We choose to use FGMRES for two reasons. First, we
find that right preconditioning is a preferable framework to
left preconditioning, since it does not change the norm of
the underlying minimization. Secondly, all of the chosen
components lead to preconditioned FGMRES algorithms
that converge in tens of iterations, so the additional memory
costs for vector storage in FGMRES are feasible (even on the
GPU) and preferable to the added computational cost of an
extra preconditioner application that is needed in classical
GMRES. We note, however, that none of the conclusions
from this study would be substantially changed by using
classical right-preconditioned GMRES.

We use our own implementation of FGMRES, making
use of our structured data structures, and use a multigrid
V(1,1) cycle as preconditioner, and a V(3,3) cycle as part
of the Block-Triangular preconditioner. At each level of
the multigrid algorithm, we use a sweep of either Braess-
Sarazin, Vanka, or Schur-Uzawa relaxation. With the Block-
Triangular preconditioner, we use three sweeps of weighted
Jacobi. At the coarsest level, we use either an exact solve
on the CPU or three sweeps of the relaxation scheme on the
GPU.

The first comparison we consider is a comparison of
Braess-Sarazin to both our tuned Vanka implementation
described in this paper and a simple Vanka implementation,
shown in Figure 13. All of the results are for problems of
size 10242, with the exception of the simple Vanka runs. Due
to its higher memory requirements, the largest problem size
that successfully ran was a problem of size 7682 elements.
However, even though simple Vanka has just over half as
many elements as the other approaches, it is still not able
match their performance. On the CPU, we see that multigrid
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Figure 13. Comparing Vanka to Braess-Sarazin for a problem
of size 10242 elements (7682 elements for simple Vanka)

with Braess-Sarazin relaxation strongly outperforms the use
of Vanka relaxation. Even though multigrid with Vanka
relaxation typically requires one fewer iteration to reach
convergence, the work required per iteration is significantly
larger than for Braess-Sarazin, resulting in multigrid with
Vanka taking about twice as long. On the GPU, however,
we are able to take advantage of the throughput of Vanka,
resulting in a runtime that is more than 23 times smaller than
on the CPU, whereas the runtime for Braess-Sarazin is only
reduced by a factor of about 11. Overall, on the GPU, tuned
Vanka outperforms Braess-Sarazin by about 10%.

Next, we compare Braess-Sarazin and tuned Vanka to the
other two preconditioning strategies, monolithic multigrid
with Schur-Uzawa and the Block-Triangular preconditioner,
shown in Figure 14. We can see that both the multigrid
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Figure 14. Comparing all four preconditioning strategies for a
problem of size 10242 elements

preconditioner with Schur-Uzawa relaxation and the Block-
Triangular preconditioner are not able to match the
performance of both Braess-Sarazin and Vanka. Initially
they perform very well, in particular the Block-Triangular
preconditioner, but they soon slow down requiring up to
more than 3 times as long as Braess-Sarazin and Vanka (on
the GPU).

The third metric to consider is the performance of our
tuned Vanka implementation for two problem sizes when
normalized per element on the CPU and per row of elements
on the GPU; this is shown in Figure 15. We observe that
the time for the tuned Vanka implementation (per element)
remains the same no matter the problem size on the CPU,
requiring about 0.03ms per element. Thus, there is no
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Figure 15. Showing the work per element (in ms) of tuned
Vanka for 2562 and 10242 elements.

additional overhead introduced by the size of the problem.
On the GPU, we are able expose the fine-grained parallelism
in the tuned Vanka implementation, resulting in a constant
work per row of elements at just over 1 ms. In fact, we are
able to perform about 10% faster per row of elements for the
larger problem size.

These results show that a careful implementation of
Vanka on the GPU not only results in the fastest time to
convergence, but it also does so without requiring additional
parameters to be set. In addition, the parallelism of Vanka
makes it a clear favorite in distributed memory settings.

Conclusions and Future Work

Several preconditioners for FGMRES are well-known to
yield scalable solution algorithms for saddle-point problems,
such as the Stokes equations, including both monolithic
multigrid and multigrid-based block-factorization precon-
ditioners. Here, we consider their implementation, perfor-
mance, and optimization, on modern CPU and GPU archi-
tectures. Different metrics were presented and analyzed,
including arithmetic intensity, performance, and runtime, for
the various kernels making up these algorithms. Given a
highly structured setup, we show that multigrid with Vanka
relaxation can be very performant on the GPU, leading to
faster convergence than when using Braess-Sarazin, both in
terms of iterations (saving just 1 iteration) and runtime (up to
10% faster). This shows that using Vanka relaxation is both
mathematically and computationally competitive, although
a careful design of the algorithm is warranted. This also
highlights the benefit of using GPUs for such algorithms, as
multigrid with Vanka on the GPU is up to 23 times faster
than on the CPU, while multigrid with Braess-Sarazin is up
to 11 times faster.

We also presented two other preconditioning strategies,
multigrid preconditioner with Schur-Uzawa relaxation,
and Block-Triangular preconditioner with multigrid and
weighted Jacobi within. Both of these have been shown to
not be able to compete with multigrid with Braess-Sarazin or
Vanka, in particular on the GPU. In addition, they introduce
additional parameters that need to be carefully chosen.

Future work includes extending this work to cases
where the tuned Vanka approach is not applicable, such
as for linearizations of the Navier-Stokes equations. It
is also not clear how well these results generalize to
other discretizations of saddle-point systems (including
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both higher-order discretizations using generalized Taylor-
Hood elements and other discretizations, such as using
discontinuous Galerkin methods). Extensions to three-
dimensional incompressible flow problems and other saddle-
point systems are also important future work. One such
system of interest, for example, that combines some of these
difficulties is the Reynolds-Averaged Navier-Stokes (RANS)
equations, in the context of wind-turbine simulations.
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